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1  | INTRODUC TION

Environmental management agencies rely on the results of monitor-
ing to answer questions about the success of their policies and pro-
grammes. Monitoring is often designed to address information needs 
for a particular site or small set of sites. If the study is poorly de-
signed, it can fail to provide meaningful data to inform management 
and policy decision making (Field, O’Connor, Tyre, & Possingham, 
2007; Legg & Nagy, 2006; Nichols & Williams, 2006). Extrapolating 
from these studies to answer larger scale questions can bias the 

estimates as single sites are rarely representative of a broader region 
(Dixon, Olsen, & Kahn, 1998; Peterson, Urquhart, & Welch, 1999).

Increasingly, monitoring on a large scale is needed to inform man-
agement needs and assess progress towards targets concerned with 
global biodiversity change (Buckland, Magurran, Green, & Fewster, 
2005; Magurran et al., 2010; Noss, 1999; Pereira & Cooper, 2006). 
Monitoring objectives and sample areas of national, regional, and local 
agencies often overlap creating efficiencies if the different groups 
coordinate their effort. Coordinating requires consistent formulation 
of goals and objectives, selection of indicators and measures, field 

 

Received:	22	November	2017  |  Accepted:	5	March	2018	
DOI: 10.1111/2041-210X.13003

R E S E A R C H  A R T I C L E

Using balanced acceptance sampling as a master sample for 
environmental surveys

Paul van Dam-Bates1  | Oliver Gansell2 | Blair Robertson3

1Planning Monitoring and Reporting,  
Department of Conservation, Christchurch, 
New Zealand
2Planning Monitoring and Reporting,  
Department of Conservation, Hamilton, 
New Zealand
3School of Mathematics and Statistics,  
University of Canterbury, Christchurch,  
New Zealand

Correspondence 
Paul van Dam-Bates 
Email: paul.vandambates@gmail.com

Handling Editor: Robert Freckleton

Abstract
1. Well-designed environmental monitoring programmes for management organisa-

tions are important for evidence-based decision making. However, many environ-
mental problems are not single agency issues that require intervention or 
monitoring	at	one	spatial	scale.	A	master	sample	can	be	used	to	coordinate	and	
scale monitoring designs to ensure consistency in information gathered and 
 robustness of estimators at the different spatial scales.

2.	 We	 propose	 using	 balanced	 acceptance	 sampling	 (BAS)	 to	 generate	 a	 master	
	sample.	In	this	context,	practical	applications	and	justification	of	BAS	as	a	master	
sample are addressed. These include sample generation, stratification, unequal 
probability	sampling,	rotating	panel	designs,	and	regional	intensification.	A	method	
for incorporating legacy sites is also provided.

3.	 Using	BAS	as	a	master	sample	is	conceptually	simple,	gives	good	spatial	balance	
over	 different	 spatial	 scales,	 and	 is	 computationally	 efficient	 to	 generate.	 An	
 example for terrestrial biodiversity monitoring in New Zealand is provided.

4. Environmental monitoring can benefit from increased coordination between 
agencies.	A	master	sample	is	an	excellent	way	to	incorporate	coordination	directly	
into	 the	 sample	 design.	 BAS	 improves	 on	 methods	 previously	 described	 and	
 provides an effective method to monitor populations at multiple spatial scales.
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protocols and sample design (Larsen, Olsen, & Stevens, 2008; Fancy, 
Gross, & Carter, 2009; Reynolds, Knutson, Newman, Silverman, & 
Thompson, 2016). If one agency establishes monitoring locations 
using standard methods and sample design, others can use that data 
for their own purposes, reducing the need to establish more monitor-
ing. By agencies working together and through a well set out design 
process, as described in Reynolds et al. (2016), the chances of moni-
toring being successful are higher and concerns about extrapolating 
estimates from disparate data sources are also reduced.

One way to coordinate sample design is to develop a master sam-
ple; a set of points that can be subsampled for different monitoring 
activities. This was first proposed by King (1945), but only recently 
has been introduced to environmental monitoring (Larsen et al., 
2008; Theobald, 2016) with implementation in the Pacific Northwest 
of the United States. Different studies drawing samples from the 
master sample enhances collaboration within and between agencies 
to	reduce	duplication	of	effort.	Additionally,	consistent	sample	de-
sign has benefits when making estimates using data from multiple 
sources. Similar to providing standard field methods, the master sam-
ple provides standardised locations for sampling that ensures objec-
tive, unbiased estimation of the population parameters of interest. 
The coordinating body requires the user to define the objectives and 
sample frame clearly before gaining access to the sample points.

The sampling method chosen should be flexible enough for a 
variety of users and study designs to be effective for coordination. 
Monitoring can take place on different spatial scales such as a na-
tional monitoring programme or a local one investigating the impact 
of management action. When designing an individual study, iden-
tifying heterogeneity and using stratification (Yoccoz, Nichols, & 
Boulinier, 2001) or unequal probability sampling (Stevens, 1997) can 
produce more precise estimates. The study may need a unique bal-
ance of status and trend estimation which can be done by defining 
panels that have different revisit schema (McDonald, 2003; Skalski, 
1990; Stevens & Olsen, 1999). In all these cases, the subsamples 
used should be unbiased and representative.

There are many ways to generate effective samples which could be 
used	to	coordinate	monitoring.	A	simple	random	sample	is	unbiased	but	
is less efficient than spatially balanced designs in the presence of spatial 
autocorrelation	(Cochran,	1946;	Grafström	&	Lundström,	2013).	A	de-
sign is spatially balanced if the sample is well-spread over the population 
—	a	sample	with	few	clumps	and	voids.	A	systematic	sample	can	be	con-
sidered near perfect spatial balance but is less flexible to changes in sam-
ple size making it a poor choice. Stevens and Olsen (2004) introduced 
generalised random tessellation stratified (GRTS) design, a spatially 
balanced design that is frequently used in environmental monitoring 
(Collier & Olsen, 2013; Fancy et al., 2009; Thompson, Miller, Mortenson, 
& Woodward, 2011). Generalised random tessellation stratified hierar-
chically orders a population using a base four numbering scheme and 
then selects a systematic sample from the ordered population. There is 
also the Local Pivotal Method (LPM) (Grafström, Lundström, & Schelin, 
2012). LPM iteratively updates each sampling unit's inclusion probability 
in a way that makes it very unlikely to include neighbouring units in a 
sample. Once n units have an inclusion probability of one, the sample 

is	released.	Although	the	spatial	balance	of	LPM	is	better	than	GRTS,	
it is computationally prohibitive on large populations. For large popu-
lations, Grafström, Saarela and Ene (2014) introduced a new rapid im-
plementation of LPM, called suboptimal LPM. LPM has better spatial 
balance, but suboptimal LPM is computationally feasible on large popu-
lations.	Another	spatially	balanced	design	is	balanced	acceptance	sam-
pling	(BAS)	(Robertson,	Brown,	McDonald,	&	Jaksons,	2013).	It	uses	a	
quasi-random number sequence to generate spatially balanced points. 
Similar to GRTS, the outcome of the sequence is an ordered set of points 
such that any contiguous  subsample maintains spatial balance.

Generalised random tessellation stratified design has been used 
to generate environmental monitoring master samples (Larsen et al., 
2008). The design is particularly useful for generating master sam-
ples because GRTS points are ordered using a reverse hierarchical 
ordering strategy that ensures that all contiguous subsamples are 
also spatially balanced (Stevens & Olsen, 2004). By taking a large 
GRTS oversample, an ordered master sample can be obtained 
from which spatially balanced subsamples can be drawn. However, 
once an oversample is chosen, it is not possible to generate addi-
tional points and this needs to be accounted for at the planning 
stage. Theobald (2016) also uses an adaptation of GRTS, Reversed 
Randomised Quadrant-Recursive Raster (RRQRR), implemented 
in ArcGIS software (Theobald et al ., 2007) to coordinate monitoring 
effort. The authors’ are not aware of an ordering strategy for the 
LPM methods and hence, it is not clear how these methods could 
be	used	for	oversampling.	BAS,	similar	to	GRTS,	creates	an	ordered	
set of points such that any contiguous subsample maintains spatial 
balance.	To	generate	a	master	sample	with	BAS,	a	random-start	 is	
chosen and after that an infinite set of points exist for the sample. 
Hence, the oversample size does not need to be specified.

The purpose of this paper is to develop a master sample for envi-
ronmental monitoring with a focus on terrestrial sampling of an area 
frame in which all subregions have positive area. We investigate using 
BAS	to	generate	a	master	sample;	how	the	points	will	be	generated	
and then used in a wide variety of ways. These include adapting to 
different spatial scales, stratification and unequal probability sam-
pling, changes in boundaries or resources, revisitation structure (panel 
design) and how to include legacy monitoring programmes. We then 
provide an example for how this could be applied to coordinate biodi-
versity monitoring at the regional and national level in New Zealand.

2  | MATERIAL S AND METHODS

2.1 | Point selection

Two-dimensional	BAS	points	are	drawn	from	a	random-start	Halton	
sequence {xk}∞k=1⊂ [0,1)2. The ith coordinate of each point in the se-
quence has an associated base bi, with b1 = 2 and b2 = 3. The ith co-
ordinate of the kth point in this sequence is (Robertson, McDonald, 
Price, & Brown, 2017)
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where ui is a random non-negative integer and ⌊x⌋ is the floor func-
tion — the largest integer that is less than or equal to x. For example, 
the first coordinate of the second point with u1 = 1 and b1 = 2 is

The two-dimensional random-start Halton sequence is

Setting u1 = u2 = 0 gives the classical two-dimensional Halton 
sequence (Halton, 1960).

The points from Equation 1 are then scaled to a minimal bound-
ing box enclosing the study area. If x1 is not in the study area, new 
sequences are considered until one with x1 in the study area is found 
(Robertson et al., 2017). Starting from x1, the first n scaled points in 
the	study	area	define	the	BAS	sample	(Robertson	et	al.,	2017).	The	
BAS	points	are	kept	in	the	same	order	as	they	appear	in	Equation	1	
and will have good spatial spread over the study area. Furthermore, 
any	contiguous	subset	of	the	BAS	sample	will	also	have	good	spatial	
spread (Robertson et al., 2017).

The random integer vector in the sequence u = (u1, u2) is cho-
sen so that 0 ≤ ui ≤ 107. This gives ≈λ1014	 possible	 BAS	 samples	
of size n, where λ is the fraction of the bounding box occupied by 
the study area. By ensuring the random start comes from a large 
set	of	integers,	the	BAS	points	are	uniformly	distributed	(Robertson	
et al., 2013). Once the random-start is selected an infinite number 
of	 BAS	 points	 exist	 over	 the	 study	 which	 constitutes	 the	 master	
sample. Higher dimensional points can be defined by using differ-
ent co-prime bases for each additional dimension (e.g. b3 = 5 when 
 sampling from a [0,1)3).

2.2 | Spatial scales

The master sample should work at different spatial scales to address 
national, regional, and local objectives. Let A be a measurable subset 
of the study area for which the master sample is defined. Because 
the master sample {xk}∞k=1 is uniformly distributed over [0,1)2 (Wang 
& Hickernell, 2000) and A is measurable, there exists a subsequence 
{zj}

∞

j=1
⊂{xk}

∞

k=1
 such that each zj∈A. Furthermore, {zj}nj=1	 is	 a	BAS	

sample of size n drawn from A, with its random start and bound-
ing	box	defined	by	the	master	sample.	Hence,	BAS	samples	can	be	
drawn from the master sample at any spatial scale within the study 
area of the master sample. This also means that a national sample 
can share points with monitoring at the local level (see Section 2.4).

2.3 | Stratification and unequal probability

Stratification with the master sample is essentially the same as tak-
ing a subsample for a specific measurable subset of the study area 
as described above. The ith stratum (measurable) has a subsequence 
{zj}

∞

j=1
⊂{xk}

∞

k=1
 such that each zj	is	in	the	stratum.	The	BAS	sample	

for the ith stratum is {zj}
ni

j=1
, where ni is the sample size required. 

Hence,	each	stratum	has	its	own	BAS	sample	with	its	random	start	
and bounding box defined by the master sample.

If unequal probability sampling is required, a third dimension 
is	added	to	the	bounding	box.	This	extra	dimension	allows	BAS	to	
sample from an arbitrary inclusion density function π(x) using an 
acceptance/rejection sampling strategy (Robertson et al., 2013). 
Specifically, a point xk = (x
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π(x). The impact of this is that some of the master sample points in 
Equation 1 will be skipped. Skipping points in Equation 1 changes the 
distribution	of	points	in	each	BAS	sample,	with	fewer	points	being	
drawn from areas where π(x) is low.

2.4 | Changing boundaries and resources

For long-term monitoring programmes, the boundaries of study re-
gions may change over time. This is easy to accommodate with the 
master sample, provided the changes are within the initial bounding 
box. Let A be a measurable study area whose boundaries changed, de-
fining a new measurable study area B with A∩B ≠	∅. If there are no sam-
pled	BAS	points	in	A∩B, points from the master sample are drawn to 
sample B. Otherwise, let xk be the sampled point in A∩B with the larg-
est index k.	A	BAS	sample	in	B, that includes sampled points from A∩B, 
is achieved if all the master sample points that fall in B with indices 
less than k are sampled. If a smaller sample is desired in B, potentially 
due to a change in resources, then points with the larger indices in B 
are removed (See Figure 1). If more points are required, then points 
can be added from the master sample in B until the new sample size 
is	 achieved.	 Ensuring	 that	BAS	 samples	 are	 drawn	 from	each	 study	
region means that spatial balance and good sampling properties are 
maintained.

2.5 | Panel design

In environmental surveys that are repeated through time, some sam-
ples may be visited more frequently than others. Estimates of sta-
tus and/or trend can be improved by balancing the number of new 
points sampled each year with repeated sampling on existing points 
(Urquhart	 &	 Kincaid,	 1999).	 A	 panel	 is	 defined	 as	 all	 samples	 that	
have the same visitation schedule. The allocation of points within a 
panel as well as between panels should be representative and unbi-
ased.	A	panel	design	is	achieved	using	the	master	sample	by	choosing	
the subset of points {zj}∞j=1 that fall within the the study area and the 
order of the points define each panel. For panel 1, we use {zj}

n1

j=1
, for 

panel 2 we use {zj}
n1+n2

j=n1+1
 and so on, where ni is the sample size for the 

ith panel. Defining panels in this way ensures that both the overall 
sample	and	each	panel's	sample	are	BAS	designs.	If	additional	points	
are needed after a full rotation, they are taken from the unsampled 
points in the master sample in the order that they appear. Note, when 
this	occurs	each	panel	may	not	be	a	true	BAS	sample	but	as	shown	in	
the	legacy	monitoring	simulation	below,	adding	BAS	points	to	an	ex-
isting sample does not significantly impact estimation and the sample 
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will still be equi-probable and give unbiased estimators. If budgets 
change, points should be removed by last in, first out. Table 1 shows 
an example panel design.

2.6 | Incorporating legacy monitoring

A	master	sample	 is	 intended	for	coordinating	 large-scale	monitor-
ing. Often, there is legacy monitoring that may already be well 
designed and this should be accommodated. We will consider 
two different types of legacy monitoring designs: simple random 
sampling (SRS) and random-start systematic sampling (SS). These 
are equi-probable designs, where each sampling unit has an equal 
chance of being included in a sample. If the existing monitoring is 
insufficient,	the	BAS	master	sample	can	be	used	to	draw	additional	
units from the area. We consider two types of sample augmenta-
tion. In both cases, we assume nl legacy units were originally sam-
pled with equal inclusion probabilities from a population of N units, 
and that these will be augmented by nb additional units. The first 
augmentation method we consider removes legacy units, draws a 
regular	BAS	sample	from	the	remainder,	and	 includes	both	 legacy	
and augmented units in the sample. In this case, we assume that 
the total sample arose jointly from a single sampling operation and 
hence, the inclusion probabilities for the legacy and augmented 
units are equal, πi = (nl+nb)∕N.

The second augmentation method we consider uses the un-
equal	probability	BAS	sampling	method	described	above	to	down-
weight units near legacy units (Foster et al., 2017). The method 
we employ increases the probability of inclusion smoothly with 
increasing distance D from legacy units. Following from Foster 
et al. (2017), we sample proportional to a Gaussian Kernel, 
f(D) = 1−exp (−D2∕σ2), where σ controls the area of influence 
around legacy units. It is necessary in this case to re-scale the 
inclusion probabilities so that they sum to n. We will call this sec-
ond method of sample augmentation that utilises altered inclusion 
probabilities	aBAS.

Spatially balanced designs use a local neighbourhood variance 
(LNV) estimator (Stevens & Olsen, 2003), but as the proportion of 
legacy units is increased the LNV tends to underestimate true vari-
ance (Foster et al., 2017). If the nl legacy units and the nb augmented 
units are considered separately, the population mean can be esti-
mated using the convex combination

where μ̂l and μ̂b the sample means of the legacy and augmented units, 
respectively. The variance can be estimated as

(2)μ̂=
(nl

n

)

μ̂l+
(nb

n

)

μ̂b,

TABLE  1 Example of a panel design in which panel 1 is sampled annually and panels 2–4 are sampled with a 2 year break in between 
described as [1−0,(1−2)3] in McDonald (2003). The sample size n and the points from the master sample in the study area {zj} are shown 
below, where an X indicates that the panel is sampled on that occasion

Panel n Sample

Sample occasion

1 2 3 4 5 6 7 8 9 10

1 20 {zj}
20

j=1
X X X X X X X X X X

2 10 {zj}
30

j=21
X X X X

3 10 {zj}
40

j=31
X X X

4 10 {zj}
50

j=41
X X X

F IGURE  1  	An	example	of	changing	boundaries	using	a	BAS	the	
master	sample	where	each	number	denotes	the	index	of	the	BAS	
point in the master sample. (a) shows 10 points drawn from the 
master sample in the study region. (b) shows an enlarged region and 
the 10 points drawn from the master sample in the region. Points 
71, 77, 89 and 95 are removed and 7, 25, 37 and 52 are included in 
the new region. If the sample size is increased to 14, then points 61, 
71, 77 and 89 would be included
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where �var(μ̂l) is the Sen, Yates and Grundy variance estimate using 
the legacy units and �var(μ̂b) is the LNV variance estimate using 
 spatially balanced units.

A	simulation	study	was	carried	out	to	investigate	the	different	
methods to incorporate legacy monitoring. The sampling frame 
was defined as a 100 × 100 raster in [0,1)2 and an estimate of the 
population mean and standard error was sought. The response 
value for each raster cell was defined as the integral of f(x) over 
the cell. Three different functions were considered to define 
the population, a strong spatial trend (Robertson et al., 2013; 

Grafström et al., 2012), the Peak function, and the Bird function. 
These functions are given in the online supplementary material 
section. Scenarios similar to Foster et al. (2017) using the program 
r (R Core Team, 2015) were run. We used an overall sample size 
of n = 60 and a number of legacy units (nl∈3,4,… ,57) were gener-
ated either as SRS or SS. More units (nb = 60−nl) were generated 
using	 GRTS	 (Kincaid	 &	 Olsen,	 2016),	 BAS,	 aBAS	 (Foster,	 2016)	
and SRS to achieve the full sample size of n = 60. Each scenario 
was run 1,000 times. When estimating the standard error of SS 
legacy units, we used SRS estimators, which provides conserva-
tive	 estimates	 in	 the	 presence	 of	 spatial	 autocorrelation	 (Aune-
Lundberg	&	Strand,	2014;	Strand,	2017).	A	detailed	description	of	

(3)�var(μ̂)=
(nl

n

)2

× �var(μ̂l)+
(nb

n

)2

× �var(μ̂b),

F IGURE  2   Results from the simulation study testing the impact of adding new samples from altered balanced acceptance sampling 
(aBAS),	balanced	acceptance	sampling	(BAS),	generalised	random	tessellation	stratified	(GRTS),	and	simple	random	sampling	(SRS)	to	existing	
legacy monitoring units were tested (see supplementary material section). The estimated (Equation 3) and simulated standard errors are 
shown
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the simulation and functions used can be accessed in the supple-
mentary material.

The results of the simulation can be seen in Figure 2. In all cases, 
adding some spread to the points improved precision over using SRS. 
aBAS	performed	the	best	when	SRS	legacy	units	were	used,	but	had	
similar	 performances	 to	 BAS	 and	GRTS	 for	 SS.	 The	 SS	 legacy	 units	
already	had	good	 spread	and	aBAS	was	not	necessary	 to	 force	bet-
ter overall spatial balance. Population 3 has periodic structure, which 
made systematic sampling perform poorly because the spread of the 
legacy units matched the structure of the population. The standard 
error estimate from Equation 3 worked well for SRS, although conser-
vative	 for	aBAS,	as	well	 as	SS.	The	 legacy	monitoring	was	 improved	
by	augmenting	the	samples	with	spatially	balanced	points.	Assuming	
the legacy monitoring is an unbiased, representative and probabilistic 
sample, there are no issues with incorporating legacy samples with the 
master sample.

The	aBAS	design	can	work	well	for	single	studies	or	simple	re-
peated studies when legacy monitoring is SRS or poorly spread. 
However, inflated variance is possible because the altered inclusion 
probabilities may not be positively correlated with the response 
variable (Robertson et al., 2017). In general, we recommend drawing 
spatially balanced points independent of the legacy monitoring. For 
design-based estimation, the variance estimate in Equation 3 should 
be used. This corrects the underestimation of LNV but requires 
there are four or more spatially balanced points as suggested in the 
SpSurvey package in r (Kincaid & Olsen, 2016) and three or more leg-
acy points. Otherwise, use LNV (nl < 3) or the legacy variance esti-
mator (nb < 4) for all points. In practice, model-based estimation is 
often used and any analyses should account for the spatial aspect of 
the design as in Foster et al. (2017).

3  | APPLIC ATION: NE W ZE AL AND 
TERRESTRIAL MONITORING

The New Zealand (NZ) Department of Conservation (DOC) is the 
lead biodiversity management agency in NZ, responsible for man-
aging	≈30%	of	NZ	as	public	conservation	land	(PCL).	Development	
of a national monitoring system has exposed the challenges in co-
ordinating monitoring design to provide results meaningful at a 
local, regional and national scale. Increasingly partner environmen-
tal agencies (local government etc.) and central government expect 
cross-agency collaboration and coordination of systems and pro-
cesses. Considerable effort has gone into a coordinated approach 
for indicators and measures and field protocols (Department of 
Conservation, 2016). There is an existing national sample of PCL, 
known as the National Level Monitoring (NLM) programme which is 
an	8-km	systematic	grid	of	≈1,400	monitoring	sites	(Coomes,	Allen,	
Scott, Goulding, & Beets, 2002). The NLM programme focusses on 
status and trend monitoring at the national scale for key indica-
tors of ecosystem structure and composition. Through collabora-
tion with local government agencies, the grid has been extended 
off PCL.

Department of conservation ecosystem management 
is focussed on a suite of priority sites known as Ecosystem 
Management Units (EMUs). To assess the outcome of manage-
ment interventions across all EMUs, the 8-km grid NLM needs to 
be intensified with changes to visitation frequency and methods 
relating	 to	 the	 specific	 management	 monitoring	 objectives.	 At	
the same time, there are EMU specific questions to be answered 
that require another intensification to a regional/local level. For 
example,	one	of	DOC's	EMUs,	Abel	Tasman	National	Park	(ATNP)	

F IGURE  3   South Island of New Zealand. (a) shows the first 
5,000 points of the master sample overlayed on red ecosystem 
management units (EMUs). (b) shows 500 master sample points 
from	(a)	that	fall	within	the	EMUs	in	red.	Abel	Tasman	National	 
Park receives seven points which are included as panel 1 points in 
Figure 4
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(40◦56′03.8′′S 172◦58′19.7′′E), is managed in partnership with a 
philanthropic foundation. The agreement governing this partner-
ship requires the foundation to invest in the recovery of biodi-
versity	 in	ATNP.	Once	 it	 is	shown	that	the	targets	pertaining	to	
increases in the abundance and distribution of bird species and 
vegetation condition are met, DOC will be responsible for the 
maintenance	of	 biodiversity	 in	ATNP.	Monitoring	 is	 required	 to	
establish	 the	 current	 state	 of	 key	 indicators	 in	 ATNP	 and	 then	
determine	 when	 agreed	 targets	 have	 been	 achieved.	 A	 sample	
design is required which can incorporate the existing NLM mon-
itoring, sample broad scales and enable local intensification of 
monitoring.

A	 national	 sample	 of	 NZ	 using	 BAS	 can	 make	 up	 the	 master	
sample, with the existing NLM points included. For efficiency and 
simplicity, each island (North Island, South Island, Stewart Island, 
Chatham Islands, etc.) will be stratified and have their own bounding 
box and random seed. The seed chosen for the South Island was 
u = (4,887,260, 18,041,662) with minimum bounding box in NZ 
Transverse Mercator 2000 (NZTM2000)

These values define the scaling needed to map the random start 
Halton points to the South Island of NZ. For example, the first point is

To sample EMUs in NZ using the master sample, select all sites 
that fall within EMU polygons. The actual required sample size 
and visitation frequency should reflect the monitoring objectives 
and follow a similar process as outlined by Reynolds et al. (2016). 
See Figure 3 for an example of clipping the master sample on the 
South Island into the first 500 samples that fall within EMUs.

At	ATNP,	one	of	the	key	targets	is	focussed	on	bird	abundance	and	
distribution	through	the	park.	A	sample	size	of	n = 65 was chosen based 
on a precision analysis using simr (Green & MacLeod, 2016) and histor-
ical bird count data from an existing intensively monitored site which 
showed that temporal variation was less than spatial. Therefore, 15 
points were selected to be measured annually and the other 50 on a 
rotating 5-year panel [1−0,(1−4)5] (McDonald, 2003). From the NLM 
programme mentioned above, there were four legacy samples in the 
sample frame which would be included in the rotating panel on years 
corresponding to the years they are to be sampled. If DOC implemented 
an EMU monitoring programme of 500 augmented points on the South 
Island,	then	there	would	be	an	additional	seven	points	in	ATNP	mon-
itored and funded by DOC using the master sample. The EMU points 
would make up Panel 1 based on the hierarchical order of the master 
sample. See Figure 4 for the selected points in this monitoring pro-
gramme.	ATNP	is	an	example	of	localised	monitoring	using	the	master	
sample that can contribute to national estimates of bird abundance and 
distribution. DOC gets better precision with the increased sampling in 
ATNP	and	the	philanthropic	foundation	saves	resources	by	using	DOC's	
national investment in monitoring explicitly in their design.

[1,089,354, 1,721,164] × [4,747,979, 5,516,919].

x1 = (631,810x
(1)

1
+1,089,354, 768,940x

(2)

1
+4,747,979)

≈ (1,235,673, 5,075,613).

FIGURE 4 	An	example	of	bird	monitoring	
in	Abel	Tasman	National	Park	New	Zealand.	
Panel 1 is measured annually while the 
other panels are on a 5-year rotation 
described as [1−0,(1−4)5]. In the first year, 
panels 1 and 2 would be measured. Blue 
points are master sample points measured 
by a national Ecosystem Management 
Unit monitoring programme that employs 
the master sample (National MS), see 
Figure 3. The red points are from the 8-km 
systematic National Level Monitoring 
programme (NLM). The black points are 
the locally augmented sampling units 
generated from the master sample (Local 
MS). This design gives excellent spatial 
coverage over the park each year (n = 25) 
and over a 5-year period (n = 65)
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The master sample above is entirely defined by the seed u and 
the bounding box. Hence, there is no need for a repository to hold 
the coordinates. Computationally the master sample is easy to run 
on	the	fly.	Generating	65	points	for	ATNP	in	Figure	4	takes	≈0.5	s	
on a desktop computer. See supplementary materials for r script to 
generate a master sample in NZ.

4  | DISCUSSION

A	 master	 sample	 can	 be	 a	 useful	 tool	 to	 organise	 environmental	
monitoring at different spatial scales as previously done using GRTS 
or	RRQRR	(Larsen	et	al.,	2008;	Theobald,	2016).	Using	BAS	 instead	
of GRTS gives better spatial balance (Robertson et al., 2013) and no 
need for an oversample. It is also possible to add an extra dimension 
for unequal probability sampling leading to an overall more flexible 
design. Not requiring an oversample to create a master sample using 
BAS	means	that	 it	will	 remain	relevant	to	any	scale	that	monitoring	
takes	place	no	matter	how	localised.	BAS	can	be	used	for	sampling	
three-dimensional space (Robertson et al., 2013) which generalises 
the concepts presented here to work for atmospheric or oceanic 
monitoring.

Previous master samples rely on large source files for point co-
ordinates.	BAS	does	not	because	it	is	deterministic	once	the	random	
seed	is	chosen.	Generating	a	BAS	master	sample	in	r is computation-
ally quick and easy to program making it possible for a user to run a 
function in r (see supplementary online material section) to sample 
a chosen region from a shape file. By making use of the deterministic 
nature of the Halton sequence and Halton boxes (Robertson et al., 
2017) the the code can be made computationally efficient for any set 
of shape files and sample sizes required.

In our experience, any large-scale long-term monitoring will 
need to incorporate already existing monitoring programmes that 
are proven effective. This was a requirement in developing a mas-
ter sample for NZ. We have shown that there is no major issue with 
incorporating legacy monitoring into the design but recommend 
that the sample is rigorously vetted to ensure no known biases are 
included, for example, the legacy monitoring is a judgement sam-
ple. Using panel designs can help incorporate the already existing 
visitation schedule of the legacy units into an efficient monitoring 
design. By generating the master sample independently of the leg-
acy monitoring it is possible that a legacy unit and master sample 
unit could be close in space, in this case both units still need to be 
measured.

The master sample helps coordinate the points sampled for envi-
ronmental surveys. Every survey at the local and national level should 
still go through rigorous design. This means defining the objectives 
of monitoring clearly and the methods to use so that they are con-
sistent with standard methodology as required by the objective. By 
following the steps outlined in Reynolds et al. (2016) and using the 
master sample for point generation, we believe that the monitoring 
programmes undertaken at all levels will have improved efficiency 
and contribute to the overall knowledge of the population of interest.
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